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Using Brain-Based Cognitive Measures to

Support Clinical Decisions in ADHD
Leanne M. Williams, PhD*†, Daniel F. Hermens, PhD*‡, Thida Thein, PhD*,
C. Richard Clark, PhD§, Nicholas J. Cooper, PhD‡, Simon D. Clarke, MD*¶,

Chris Lamb, MDk, Evian Gordon, MBBCh, PhD*†‡, and Michael R. Kohn, MD*¶

Measures of cognition support diagnostic and treat-
ment decisions in attention deficit hyperactivity disor-
der. We used an integrative neuroscience framework
to assess cognition and associated brain-function corre-
lates in large attention deficit hyperactivity disorder
and healthy groups. Matched groups of 175 attention
deficit hyperactivity disorder children/adolescents and
175 healthy control subjects were assessed clinically,
with the touch screen-based cognitive assessment
battery ‘‘IntegNeuro’’ (Brain Resource Ltd., Sydney,
Australia) and the ‘‘LabNeuro’’ (Brain Resource Ltd.,
Sydney, Australia) platform for psychophysiologic re-
cordings of brain function and body arousal. Integ-
Neuro continuous performance task measures of
sustained attention classified 68% of attention deficit
hyperactivity disorder patients with 76% specificity,
consistent with previous reports. Our additional cogni-
tive measures of impulsivity, intrusive errors, inhibi-
tion, and response variability improved sensitivity to
88%, and specificity to 91%. Positive predictive power
was 96%, and negative predictive power, 88%. These
metrics were stable across attention deficit hyperactiv-
ity disorder subtypes and age. Consistent with their
brain-based validity, cognitive measures were corre-
lated with corresponding brain-function and body-
arousal measures. We propose a combination of candi-
date cognitive ‘‘markers’’ that define a signature for at-
tention deficit hyperactivity disorder: ‘‘sustained
attention,’’ ‘‘impulsivity,’’ ‘‘inhibition,’’ ‘‘intrusions,’’
and ‘‘response variability.’’ These markers offer a frame
of reference to support diagnostic and treatment

decisions, and an objective benchmark for monitoring
outcomes of interventions. � 2010 by Elsevier Inc.
All rights reserved.
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Introduction

Attention deficit hyperactivity disorder is the most com-

mon psychiatric disorder in patients aged 6-17 years, with

prevalence estimates ranging from 2-16%, or in other words,

with at least one patient in every classroom. Its economic

impact is substantial, affecting society and the individual’s

family [1]. A diagnosis of attention deficit hyperactivity

disorder is currently based on a ‘‘classic triad’’ of signs:

inattention and/or hyperactivity with impulsivity [2].

The addition of objective measures may enhance the

reliability of clinical decisions, and provide concrete bench-

marks for monitoring progress. These benchmarks offer the

additional benefit of engaging both patient and family, and

providing them with explicit feedback [3]. In the move

toward a fifth edition of the Diagnostic and Statistical

Manual for Mental Disorders, the importance of objective

measures linked to underlying brain function has also been

highlighted [4,5]. Assessments of cognition provide such

measures. In this regard, cognition encompasses the aspects

of thinking that allow for attention, memory, and planning
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(or executive function), and that are linked to the interaction

of cortical with subcortical brain systems [6]. Objective

measures of cognition and brain-function may provide fur-

ther insights into the pathophysiologic processes underlying

the overt signs of attention deficit hyperactivity disorder.

Although a consensus is emerging that the signs of attention

deficit hyperactivity disorder reflect disturbances in cognition

and underlying brain function [7], no similar theoretical con-

sensus exists regarding their cause. We propose an ‘‘integra-

tive neuroscience’’ model that draws on the theories that

emphasize the involvement of multiple and dynamic brain

pathways in the development of attention deficit hyperactivity

disorder, and the corresponding maturational context [8-11].

In this model, attention deficit hyperactivity disorder is hy-

pothesized to exhibit a core disturbance in sustained attention,

a ‘‘thinking’’ process vital to maintaining focus and concentra-

tion over time [6]. Without the capacity to sustain attention,

nonsignificant or irrelevant information may intrude on think-

ing. Moreover, the capacity to react effectively to significant

stimuli, and withhold reactions to nonsignificant stimuli,

may be diminished, producing impulsive responses. These

three interrelated processes are proposed to underlie the triad

of inattention, hyperactivity, and impulsivity signs. They

draw on the evidence to date for cognitive disturbances in

attention deficit hyperactivity disorder [12]. In addition, the

combination of poor attention, intrusions, and impulsive

responding is likely to produce inconsistent responses to tasks,

as reflected in anexcessive variability of response times.These

thinking processes implicate the cortical brain systems and

their interactions with the major subcortical systems, i.e., stria-

tal (basal ganglia) and limbic [6]. These systems aremodulated

by monoamines such as dopamine and norepinephrine which

are also linked to attention deficit hyperactivity disorder.

The aims of this study were to identify core cognitive

indicators of attention deficit hyperactivity disorder and its

triad of signs, along with the brain correlates of these cogni-

tive indicators. To date, the cognitive assessment of attention

deficit hyperactivity disorder has focused in particular on sin-

gle cognitive tasks, which have robust sensitivity but are not

designed for specificity [13]. We used a cognitive battery en-

compassing multiple domains of cognition. Our first step in-

volved identifying the cognitive measures that distinguished

patients with attention deficit hyperactivity disorder from

healthy control subjects. Secondly, we identified which mea-

sures formed core composites, taking intercorrelations

between them into account. Third, using an integrative theo-

retical framework, the brain-function correlates of cognitive

measures were assessed. It was predicted that core composites

of cognition would provide a sensitive and specific differen-

tiation of attention deficit hyperactivity disorder, and that

these composites would relate to brain function.

Methods

Participants

One hundred and seventy-five children and adolescents with attention

deficit hyperactivity disorder (12.29 � 3.08 years S.D.; range, 6-18 years;

40 girls), and 175 age-matched and sex-matched healthy control subjects

(12.24 � 3.10 years S.D.; range, 6-18 years; 40 girls), were recruited

from metropolitan regions as part of the standardized Brain Resource Inter-

national Database [14,15]. Attention deficit hyperactivity disorder and con-

trol participants were also matched on grade at school (patients with

attention deficit hyperactivity disorder, 6.8 � 3.1 S.D.; control subjects,

7.0 � 3.0 S.D.) and intelligence quotient, as estimated by the Spot the

Word Test of premorbid intelligence [16]. All participants spoke English.

In this sample, 63% were Caucasian, and the rest were Asian.

A primary diagnosis of attention deficit hyperactivity disorder was

based on Diagnostic and Statistical Manual for Mental Disorders-IV crite-

ria, and was determined via clinical interview by the referring pediatrician

(authors S.D.C., M.R.K., or C.L.). The interrater reliability of diagnoses

was high (k, r = 0.91). In addition to clinical diagnosis, participants with

attention deficit hyperactivity disorder exhibited a clinically meaningful

severity of signs on the Conner’s Parent Rating Scales: Revised-Long

Version (t-scores $65 for Inattentive or Hyperactivity/Impulsivity

subscales). Ratings for all scales are provided in Table 1.

One hundred and three patients with attention deficit hyperactivity

disorder (24 girls) were of the combined subtype, 66 (15 girls) were of

the inattentive subtype, and six (one girl) were of the hyperactive/impulsive

subtype. Comorbid diagnoses (oppositional defiant disorder, learning dis-

order, conduct disorder, depression, and anxiety) were accepted, but were

categorized into broad subgroups, wherein 11% exhibited internalizing co-

morbidities, 35% exhibited externalizing comorbidities, and 12% exhibited

learning disorder comorbidities.

Brain Resource web-based screening was used to assess demographic de-

tails and exclusion criteria. These criteria for both groups included a personal

or family history of an Axis I psychiatric disorder (other than those listed

above for attention deficit hyperactivity disorder participants), a physical

brain injury, a neurologic disorder, a genetic disorder or other serious medical

condition, or a personal history of drug or alcohol addiction. Axis I disorders

were also screened using the Somatic and Psychological Health Report [17],

which identifies the signs of these major psychiatric disorders. All partici-

pants were included only if their estimated intelligence quotient was $80,

as assessed by the Spot the Word Test estimate of premorbid intelligence [16].

One hundred and fifteen participants with attention deficit hyperactivity

disorder were medication-naive, and 60 were withdrawn from stimulant

medication at least 2 days before testing. Control participants were not med-

icated, and were free of a history of medication that might affect cognition.

All participants were asked to refrain from drinking caffeinated beverages

and smoking cigarettes for 2 hours before a study session. Each participant

Table 1. Means for Conner’s Parent Rating Scale-Revised

Mean Rating
Conner’s Parent Rating Scale-Revised:

L Measures Mean S.D.

Global index 75.21 10.89

Diagnostic and Statistical Manual for Mental

Disorders-IV: Inattentive

71.70 9.64

Diagnostic and Statistical Manual for Mental

Disorders-IV: Hyperactive-Impulsive

74.17 12.64

Diagnostic and Statistical Manual for Mental

Disorders-IV: Total

75.14 10.24

Oppositional 70.60 12.59

Cognitive Problems/Inattentive 71.58 9.41

Hyperactivity 74.21 13.65

Anxious-Shy 59.53 13.67

Perfectionism 53.05 10.26

Social Problems 62.57 14.47

Psychosomatic 63.08 15.73

Attention Deficit Hyperactivity Disorder

Index

73.26 9.29

Restless-Impulsive 74.46 10.64

Emotional Lability 68.55 14.11

Williams et al: Brain-Based Cognition in ADHD 119
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provided written, informed consent or assent to participate in the research.

The institutional ethics review board at each institution provided approval.

Cognitive Assessment: IntegNeuro

All participants completed the standardized Brain Resource cognition

assessment, ‘‘IntegNeuro,’’ with demonstrated reliability, validity, and es-

tablished norms for patients aged 6 to over 80 years [16,18,19]. Table 2

summarizes the individual tasks comprising the IntegNeuro battery. These

tasks include a Continuous Performance Test, equivalent to the Test of Var-

iables of Attention [20] and Conner’s Continuous Performance Test [21]

used commonly in assessments of attention deficit hyperactivity disorder.

IntegNeuro was used to assess multiple domains of cognition in the same

individual subjects. Although the Continuous Performance Test was dem-

onstrated to discriminate individuals with attention deficit hyperactivity dis-

order from healthy control subjects at moderate to high levels of sensitivity

(60-80%), its specificity and predictive power have been more contentious

[13]. There is evidence that when a Continuous Performance Test is used

with additional measures, such as those assessing impulsivity, its specificity

rises substantially [22]. A similar picture emerges for other individual cog-

nitive tasks that assess selective attention, impulsivity, working memory,

and executive functioning in attention deficit hyperactivity disorder [23-25].

Measures of accuracy and reaction time were extracted from the Integ-

Neuro cognitive tasks. Accuracy included false-positive and false-negative

errors (Table 2).

Brain-Function Assessment: LabNeuro

Using the standardized Brain Resource methodology, LabNeuro, with

a Neuroscan Compumedics Synamps system (Compumedics Ltd., Victoria,

Australia), we undertook electroencephalogram recordings in the same sub-

jects. These recordings were performed during resting baseline and during

cognitive tasks, and were demonstrated in previous studies to differentiate

attention deficit hyperactivity disorder from healthy subjects.

RESTING A 2-minute recording was performed while the patient sat qui-

etly with eyes closed, followed by a second 2-minute recording with the pa-

tient’s eyes open [26]. These measures provided an index of brain activity.

Brain activity was quantified by electroencephalogram power in d, q, a, and

b bands, using previously established procedures for attention deficit hyperac-

tivity disorder [27]. Simultaneous measures of heart rate were also used to as-

sess related body (autonomic) arousal, quantified in terms of beats per minute.

CONTINUOUS PERFORMANCE TASK A task equivalent to that used in

the IntegNeuro cognitive assessment was used to elicit stimulus-locked

changes in an electroencephalogram (or event-related potentials) [28]. The

primary event-related potential component was P450, elicited within 350-600

ms after a stimulus. The name P450 refers to a positive deflection in the

event-related potential occuring around 450 ms after stimulus.

GO-NOGO ‘‘IMPULSIVITY’’ TASK We used a Go-NoGo task equiv-

alent to that used in the IntegNeuro cognitive battery. This task assesses the

capacity to generate automatic reactions to relevant stimuli, and to with-

draw responses to irrelevant stimuli in the environment. The resulting

event-related potentials were associated with impulsivity [29]. In this

task, we focused on the previously established N200 event-related potential

[30]. The name N200 refers to a negative deflection in the event-related

potential occuring around 200 ms after stimulus.

Data Reduction

We first took into account those variations in measures attributable to

age and sex. A ‘‘peer regression modeling’’ technique was used, based

Table 2. Individual cognitive tasks making up the IntegNeuro battery*

Task Measures Description

Continuous Performance

Test

Accuracy (total, false-positive, and false-negative

errors), RT, variability of RT

Sustained attention to series of letters (D, C, G, or T). Identify when same

letter is repeated (‘1-back’). Requires working memory updating.

Go-NoGo Accuracy (total, false-positive, and false-negative

errors), RT, variability of RT

Press response pad as quickly as possible to ‘‘Go’’ (green) trials, and

withhold in ‘‘NoGo’’ (red) trials. Assessing impulsivity vs

inhibition.

Switching of Attention Accuracy (switching errors), completion time,

connection time

Connect a sequence of alternating numbers and letters; assesses

information-processing efficiency.

Executive Maze Accuracy (total, overrun errors), completion time Discover (by trial and error) a maze path; reflecting planning,

monitoring feedback, and error correction.

Verbal Interference Accuracy (errors), RT Respond to name of color word (ignore color) and then color word

(ignore name); assessing supression of automatic responses.

Verbal Memory Recall Accuracy (recall and Intrusion errors),

learning rate

Learn and then recall lists of 12 words; assesses learning, memory

recall, and recognition.

Span of Visual Memory Accuracy (total recall, and maximum recall span) Repeat a sequence of visual blocks; assessing visual working memory.

Digit Span Accuracy (total recall, and maximum recall span) Repeat a series of digits in forward and backward order; assessing

working memory.

Choice Reaction Time RT Respond to one of four circles as they light up; assesses decision-related

reaction time. Assessing sensorimotor coordination and speed.

Word Generation Accuracy (number of words, number of

animal names)

Generate as many words (starting with F, A, and S) and animal names

as possible in 60 s, assessing verbal and semantic fluency.

Motor Tapping Number and variability of taps Tapping index finger as fast as possible for 60 s; assessing

sensorimotor response speed.

Emotion Identification Accuracy, RT Identify emotions revealed in facial expressions (anger, disgust, fear,

sadness, or happiness).

* IntegNeuro also provides an estimate of premorbid IQ, using the Spot the Word task. Recent versions include Emotion Identification and Emotion

Recognition tasks, that were not used in the present study, but have been in independent studies (26, 48).

Abbreviations:

CPT = Continuous performance test

RT = Reaction time

TOVA = Test of variables of attention
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on well-established psychometric principles. Age was modeled using both

linear and logarithmic terms, and sex was modeled using a linear term. The

expected score for each measure on each task was subtracted from the par-

ticipant’s actual score, and the resulting difference was divided by the stan-

dard error of the estimate of the regression equation. The resulting

standardized score may be interpreted in a similar way to traditional

z-scores. In line with traditional interpretations, a score of 1.0 or below

was considered sufficiently impaired to be flagged for clinical attention,

and a score of 2.0 or below was considered clinically significant. These

standardized scores were used in statistical analyses.

Data Analyses

ATTENTION DEFICIT HYPERACTIVITY DISORDER VS HEALTHY

CONTROL DIFFERENCES Analysis of variance was used to determine

which IntegNeuro cognitive measures revealed significant differences be-

tween the patients with attention deficit hyperactivity disorder and the healthy

control group. Given the number of measures, we addressed the issue of mul-

tiple comparisons by using an extremely stringent threshold of P < 0.001.

With the sample size used in this study, the statistical power to identify group

differences of 0.5 S.D. or greater at this significance level was 98%.

To identify the core composites of cognition that distinguished patients

with attention deficit hyperactivity disorder from control subjects, we iden-

tified which of these measures represented highly correlated clusters.

SENSITIVITY, SPECIFICITY, AND PREDICTIVE POWER FOR ATTEN-

TION DEFICIT HYPERACTIVITY DISORDER For those core composites

that differentiated patients with attention deficit hyperactivity disorder

from the healthy control group, we determined the degree of severity of dif-

ficulty in each patient with attention deficit hyperactivity disorder. Based

on previous research [24], impairment was defined as #1.0 S.D. below

the mean. We computed sensitivity (percent with attention deficit hyperac-

tivity disorder correctly classified) and specificity (percent of control sub-

jects correctly classified) for each marker. We also computed the positive

predictive power (the probability of those who were impaired on measures

and who were diagnosed with attention deficit hyperactivity disorder) and

negative predictive power (the probability of those who tested normal on

measures and who were confirmed as controls).

Sensitivity, specificity, and predictive power were progressively recom-

puted for the cumulative combination of composites. To confirm the

optimal combination of measures to classify attention deficit hyperactivity

disorder, a discriminant function analysis was undertaken.

We then recomputed these metrics using a more stringent severity threshold

for determining impairment on each measure, at #2.0 S.D. below the mean.

ATTENTION DEFICIT HYPERACTIVITY DISORDER SUBTYPES AND

COMORBIDITY We examined whether the combination of composite

measures resulting from the above analyses varied according to diagnostic

subtype of attention deficit hyperactivity disorder, i.e., inattentive, hyper-

active/impulsive, or combined. We also examined whether these compos-

ites would vary with allied (or comorbid) conditions.

BRAIN-FUNCTION CORRELATES Analysis of variance was used to

determine which LabNeuro measures of brain and body function revealed

significant differences between patients with attention deficit hyperactivity

disorder and healthy control groups at the stringent threshold of P <0.001.

Pearson correlation analyses were then used to determine which

cognitive composites that distinguished patients with attention deficit

Tasks Assessing Equivalent Construct References for Further Details

Conner’s CPT, TOVA 16,18,19,42-47 (for use in other clinical groups)

48,49 (for use in other clinical groups)

Trails A and B (paper and pencil) 16,18,19,42-47 (for use in other clinical groups)

Austin Maze 16,18,19,42-47 (for use in other clinical groups)

Stroop 16,18,19,42-47 (for use in other clinical groups)

Rey Auditory Verbal Learning Test, California Verbal Learning Test 16,18,19,42-47 (for use in other clinical groups)

Corsi blocks 16,18,19,42-47 (for use in other clinical groups)

16,18,19,42-47 (for use in other clinical groups)

16,18,19,42-47 (for use in other clinical groups)

Controlled Oral Word Test 16,18,19,42-47 (for use in other clinical groups)

16,18,19,42-47 (for use in other clinical groups)

Penn Emotion Test 49,50 (for further psychometric details), 29 (for previous use in

attention deficit hyperactivity disorder)

Williams et al: Brain-Based Cognition in ADHD 121
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hyperactivity disorder from control subjects also produced correlates with

brain-body measures.

Results

Differences in Patients with Attention Deficit
Hyperactivity Disorder and Healthy Control Subjects

Table 3 lists the individual IntegNeuro cognitive mea-

sures that distinguished patients with attention deficit

hyperactivity disorder from the healthy control group at

P < 0.001. Based on an intercorrelation threshold of

>0.80, the results indicate that these individual cognitive

measures can be grouped into four composites, representing

candidate cognitive ‘‘markers’’ as follows:

(1) Sustained Attention: Errors and reaction time on the

Continuous Performance Test (visual).

(2) Impulsivity: False-positive errors on the Continuous

Performance Test and Go-NoGo tasks.

(3) Inhibition: Errors for part 1, and the difference in errors

and reaction time for verbal interference part 1 (naming

words) vs part 2 (naming colors).

(4) Intrusions: Errors of perseveration on the Switching of

Attention task, Executive Maze overrun errors, and er-

rors of intrusion on the Verbal Memory Recall task.

(5) Response Variability: Variability of reaction time on

the Continuous Performance Test and Go-NoGo tasks.

These composites were identified as candidate markers

for confirmatory investigation.

Sensitivity, Specificity, and Predictive Power for
Attention Deficit Hyperactivity Disorder

Calculation of the sensitivity, specificity, and predictive

power for these candidate cognitive markers was under-

taken for Sustained Attention first, as the equivalent of pre-

vious assessments of attention deficit hyperactivity disorder

using a Continuous Performance Test (Table 4). These met-

rics were then calculated for the addition of the Impulsivity,

Intrusions, Inhibition, and Response Variability markers,

over and above sustained attention, to determine if they

added to the specificity and predictive power (Table 4).

Sustained Attention was the most sensitive and predictive

marker, and individually classified 68% of participants with at-

tention deficit hyperactivity disorder (Table 4). Each metric of

sensitivity, specificity, and predictive power increased sub-

stantially with the addition of three cognitive markers, i.e., Im-

pulsivity, Intrusions, and Response Variability (Table 4).

Inhibition did not contribute over and above these three

markers, but was impaired in attention deficit hyperactivity

disorder, in addition to Impulsivity, Intrusions, or Response

Variability, thereby providing further confidence in the pres-

ence of cognitive alterations. The increase in specificity and

negative predictive power (91% and 88%, respectively) was

consistent with the hypothesis that multiple testing would en-

hance the correct classification of healthy control subjects as

well as patients with attention deficit hyperactivity disorder.

These increases indicate that the inclusion of these markers

provides additional information important in differentiating

parts of the spectrum of attention deficit hyperactivity disorder.

There was only a small reduction in sensitivity, with an in-

crease in specificity, when a highly stringent threshold of #2

S.D. was used for each candidate marker. At this threshold,

the sensitivity was 84%, the specificity was 94%, the posi-

tive predictive power was 88%, and the negative predictive

power was 95%. A confirmatory discriminant function anal-

ysis supported this separation, confirming the sensitivity and

specificity for this combination of candidate markers.

Brain-Function Correlates

The task-related brain-function markers also provided con-

vergent support for the candidate cognitive markers. Firstly,

the measures of brain function distinguished patients with at-

tention deficit hyperactivity disorder from the healthy control

group at P < 0.0001, consistent with the view that these

markers are brain correlates of cognitive measures (Table 5).

The brain-function measures revealed the following

composites:

Electroencephalogram q (brain arousal): A global in-

crease in q power in attention deficit hyperactivity disorder,

relative to a significant decrease in b power (Table 5). This

increase was particularly pronounced over medial fronto-

central sites, which were averaged to form the composite

for electroencephalogram q, relative to b power.

Heart rate (body arousal): A corresponding reduction in

mean heart rate, which was most pronounced in the

Table 3. IntegNeuro cognitive measures that significantly

distinguished patients with attention deficit hyperactivity disorder

from healthy control subjects at P < 0.001, and effect size of

differences (h2)

Composite and Contributing Tasks F Value Effect Size

Sustained Attention

CPT total errors 53.18 0.15

CPT reaction time 17.89 0.06

Impulsivity

CPT: false-positive errors 36.21 0.11

Go-NoGo: false-positive errors* 13.26 0.04

Intrusions

Switching of Attention perseveration errors 23.57 0.07

Executive maze overrun errors 40.71 0.12

Verbal memory recall, errors of intrusion 19.39 0.06

Inhibition

Verbal interference part 1 errors 7.32 0.02

Verbal interference part 2 � part 1 errors 7.25 0.02

Verbal interference part 2 � part 1 RT 10.63 0.03

Response Variability

CPT: variability in reaction time 32.00 0.10

Go-NoGo variability in reaction time 39.49 0.11

* Falsely responding to a ‘‘NoGo’’ stimulus.

Abbreviation:

CPT = Continuous performance test

RT = Reaction time
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executive maze task (contributing to the Intrusions marker

from IntegNeuro).

Continuous Performance Test P450 event-related

potential: A reduction in P450 elicited by updating the work-

ing memory in the visual Continuous Performance Test,

which was particularly pronounced over parietal-occipital

sites (Pz, P4, Oz, and O2). The event-related potentials

data for these sites were averaged to form the Continuous

Performance Test P450 event-related potential composite.

No-Go N200 event-related potential: A global enhance-

ment in N200 to ‘‘No-Go’’ stimuli, consistent with impulsiv-

ity. This enhancement was especially pronounced across the

medial frontal to parietal sites used to form the composite.

These brain-function measures were confirmed as signifi-

cant correlates of the candidate cognitive markers (Table 6).

Correlations were moderate, consistent with their ecological

validity, i.e., with large numbers of subjects, it is expected

that meaningful and highly significant correlations would

be on the order of 0.2-0.3, reflecting the genuine magnitude

of the relationship, rather than a somewhat inflated correla-

tion because of the variance in smaller sample sizes.

Attention Deficit Hyperactivity Disorder Subtypes and
Comorbidity

The values of sensitivity, specificity, and negative and

positive predictive power did not differ by more than 3%

when attention deficit hyperactivity disorder subtypes

were examined. However, specific profiles of correlations

between candidate markers and severity were evident,

according to subtype:

Inattentive: The most significant correlations were

between severity (indexed by Conner’s Parent Rating Scale

total score) and Response Variability (r = �0.33).

Hyperactivity/Impulsivity: The most significant asso-

ciations were between severity (indexed by Conner’s

Parent Rating Scale total score) and both Impulsivity

(r = �0.21) and Intrusions (r = �0.25).

For the combined markers, there was only a slight varia-

tion of �2% in sensitivity according to age, with 88% sen-

sitivity for older (aged 13-18 years) and 92% for younger

(aged 8-12 years) patients with attention deficit hyperactiv-

ity disorder. There was equivalent sensitivity across

markers for males (89%) and females (90%) with attention

deficit hyperactivity disorder.

There were also no significant effects of comorbidity in

analyses of covariance conducted for each candidate

marker. Rather, comorbid conditions were distinguished

by the several indicators, over and above the attention def-

icit hyperactivity disorder markers.

LEARNING DISORDER In the 12% of participants with an

allied learning disorder, this allied disorder was indicated

by a relatively lower performance (of >1 S.D.) on verbal vs

nonverbal tasks, consistent with the profile across Weschler

tasks [31]. This differential was computed from a global av-

erage of verbal vs nonverbal tasks from the cognitive battery.

EXTERNALIZING DISORDERS: CONDUCT AND OPPOSI-

TIONAL DEFIANCE In males with conduct disorder in addi-

tion to attention deficit hyperactivity disorder, the NoGo

Impulsivity event-related potential was particularly

Table 4. Summary of sensitivity, specificity, and predictive power for candidate cognitive markers of attention deficit hyperactivity disorder

Candidate Markers Sensitivity Specificity

Positive Predictive

Power

Negative Predictive

Power

Sustained Attention (composite of CPT errors and reaction time) 0.68 0.76 0.75 0.71

Impulsivity (composite of CPT and Go-NoGo false-positive errors) 0.88 0.91 0.96 0.88

Intrusions (composite of Switching of Attention connection time,

maze overrun errors, and Verbal Recall errors of intrusion)

Inhibition (composite of errors for verbal interference part 1 and

difference in reaction time between parts 1 and 2)

Response Variability (composite of variability of reaction time in

CPT and Go-NoGo)

Abbreviation:

CPT = Continuous performance test

Table 5. LabNeuro brain-function measures that significantly

distinguished patients with attention deficit hyperactivity disorder

from healthy control subjects at P < 0.001, and effect size of

differences (h2)

Brain-Function Measure

Contributing

Regions F Value

Effect

Size

Continuous performance test

450 event-related potential Pz 11.56 0.04

P4 13.88 0.05

Oz 11.57 0.04

O2 12.07 0.04

Go-NoGo

NoGo N200 event-related potential Fz 9.48 0.03

Cz 9.24 0.03

Pz 13.00 0.04

Brain arousal

Electroencephalogram q* Fz 6.89 0.02

Fcz 7.01 0.03

Body arousal

Heart rate 23.05 0.07

* Electroencephalogram q power relative to b power.
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pronounced (and demonstrated an impairment of at least 1

S.D. in 90% of cases).

INTERNALIZING DISORDERS: ANXIETY AND DEPRESSION

The markers that distinguished anxiety and depression as

allied conditions were beyond the scope of this study, and

were reported elsewhere [29]. Anxiety in attention deficit

hyperactivity disorder was associated with impairments in

the early P120 event-related potential component, elicited

around 120 ms poststimulus by negative facial emotion

stimuli over occipitotemporal brain regions, consistent

with a neural negativity bias.

Discussion

In this study, we used an integrative approach to identify

candidate cognitive markers for attention deficit hyperactiv-

ity disorder that have a basis in brain-function correlates.

These markers reflected difficulties in ‘‘Sustained Atten-

tion’’ (defined by Continuous Performance Test measures),

‘‘Impulsivity’’ (defined by false-positive errors), ‘‘Intru-

sions’’ (characterized by errors of intrusion from irrelevant

information), ‘‘Inhibition’’ (lack of suppression of interfer-

ing information), and ‘‘Response Variability’’ (variability

of reaction times across tests). This combination of cogni-

tive measures from the IntegNeuro battery provided a highly

robust classification of attention deficit hyperactivity disor-

der, with a sensitivity of 88%, a specificity of 91%, a posi-

tive predictive power of 96%, and a negative predictive

power of 88%. Although these metrics were adequate for

the Continuous Performance Test considered on its own,

the inclusion of other measures provided maximal sensitiv-

ity, specificity, and predictive power.

These candidate cognitive markers were correlated with

corresponding measures of brain function, providing initial

support for their basis in biological processes. These findings

indicate that brain-based cognitive markers may provide

valuable support for clinical decisions in the diagnosis and

treatment of attention deficit hyperactivity disorder and allied

conditions. A simple touch-screen platform for assessing cog-

nition may be readily implemented in the clinical setting.

Our findings that multiple measures provided maximal

specificity as well as sensitivity for distinguishing attention

deficit hyperactivity disorder are consistent with previous

studies [13,32]. These findings reinforce the need to con-

sider composite cognitive measures and integrative theoret-

ical models [10,11,22].

The ‘‘Sustained Attention’’ marker provided the best

single measure for the differentiation of attention deficit

hyperactivity disorder versus healthy subjects. This domain

reflects a general dysfunction in sustained attention or vig-

ilance, consistent with previous evidence using the Contin-

uous Performance Test [32,33]. The Impulsivity marker

aligns with the notion that deficits in suppressing prepotent

responses may be fundamental to attention deficit hyperac-

tivity disorder [34], whereas the Intrusions marker reflects

concomitant impairments in the control of attention and in

incorporating important new information into memory

[34]. Furthermore, the Inhibition marker aligns with the no-

tion that deficits in inhibitory control may be fundamental to

attention deficit hyperactivity disorder [34]. The Response

Variability marker accords with evidence that abnormally

high variability is characteristic of attention deficit hyperac-

tivity disorder [33,35].

These findings provide support for an ‘‘integrative neuro-

science’’ model that brings together theories of attention

deficit hyperactivity disorder that focus on particular do-

mains of function [8,9,12]. The Sustained Attention marker

reflects disruptions to a ‘‘thinking’’ process that maintains

focus and concentration on significant events in the envi-

ronment [6]. Without the capacity to sustain attention, non-

significant or irrelevant information may intrude on

thinking, as reflected in the Intrusions marker. Moreover,

the capacity to react effectively to significant stimuli, and

to withhold reactions to nonsignificant stimuli, may be

Table 6. Candidate cognitive markers and their correlates and effect size (Cohen’s D estimate) in brain-function composites for attention deficit

hyperactivity disorder*

Candidate Markers Brain Function correlate Correlation, P value P Value Effect Size

Sustained Attention CPT P450 event-related potential 0.33 <0.0001 0.70

Heart rate 0.28 0.001 0.60

Impulsivity NoGo N200 event-related potential 0.25 0.002 0.50

Electroencephalogram q 0.21 0.008 0.45

Intrusions CPT P450 event-related potential 0.23 0.006 0.48

Heart Rate 0.20 0.016 0.40

Inhibition Electroencephalogram q 0.30 <0.0001 0.65

Response Variability CPT P450 event-related potential 0.24 0.005 0.50

NoGo N200 event-related potential 0.20 0.014 0.40

Heart rate 0.36 <0.0001 0.80

* For consistency of interpretation, correlations are presented in a consistent direction such that positive associations reflect poorer performance on cognitive

markers with poorer brain function and lower body arousal.

Abbreviation:

CPT = Continuous performance test
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diminished, producing impulsive responses, as captured by

the Impulsivity marker. The poorer capacity to suppress ir-

relevant information (rather than focusing on relevant infor-

mation) that defined the Inhibition marker complements the

alterations captured by the Instrusions and Impulsivity

markers. Individuals with attention deficit hyperactivity dis-

order tended to exhibit Inhibition impairments coupled with

either Intrusions or Impulsivity, or both. These interrelated

processes are proposed to underlie the triad of inattention,

hyperactivity, and impulsivity signs, respectively. The

combination of poor attention, intrusions, and impulsive re-

sponding is likely to account for the excessive variability of

response captured by the Response Variability marker.

Correlations between these cognitive markers and related

brain-function measures support the view that these think-

ing processes involve cortical brain systems and their inter-

actions with the major subcortical systems, i.e., striatal

(basal ganglia) and limbic [6]. The profile of attention def-

icit hyperactivity disorder disturbances in each of the

brain-function measures was also consistent with previous

reports. We observed excessive slow-wave electroencepha-

logram activity in attention deficit hyperactivity disorder,

pronounced within the q band. Excessive slow-wave neural

activity was demonstrated previously to be sensitive in dis-

tinguishing patients with attention deficit hyperactivity dis-

order from healthy control subjects, and was associated

with theories of altered brain maturation in this condition

[36-39]. Similarly, the reduced P450 event-related potential

for the Continuous Performance Test was consistent with

studies focusing in detail on this measure [28]. The reduc-

tion in event-related potentials for NoGo stimuli was also

evident in children with attention deficit hyperactivity dis-

order in previous research [40]. These disruptions to brain

function also implicate monoamines such as dopamine

and norepinephrine, which modulate the cortical-subcorti-

cal brain systems involved, and which were also linked to

attention deficit hyperactivity disorder.

Research indicated that cognitive performance may vary

with duration of previous stimulant use in attention deficit

hyperactivity disorder [41]. This information was not

collected for the unmedicated participants in this study.

However, the lack of difference in cognitive function

according to age may be considered an indirect indication

that previous exposure to stimulants did not significantly

affect performance, insofar as previous exposure may be

longer for older vs younger children.

This study did not reveal variations in the signature of

candidate markers across clinical subtypes, which may be

attributable to the nature of the sample. Our sample primar-

ily comprised inattentive and combined subtypes, which are

the two most prevalent and most studied subtypes. Future

studies would benefit from assessing more patients of the

hyperactive-impulsive subtype.

Future research should examine the specificity of markers

by including not only attention deficit hyperactivity disorder

with comorbid conditions such as anxiety, conduct, and learn-

ing disorders, but also individuals with these disorders in the

absence of attention deficit hyperactivity disorder. Research

is also needed to provide convergent support for the comorbid

conditions assessed in the present study, such as diagnosis by

psychoeducational assessment to provide support for indica-

tors of learning problems. In such studies, linkages between

thinking and emotional alterations in attention deficit hyper-

activity disorder, and their biological correlates might be ex-

amined, in light of evidence for emotional brain markers and

theories of attention deficit hyperactivity disorder that high-

light the integration of these alterations [10,29].

In future studies, it would also be meaningful to assess

the integrative relationships between cognitive markers

and other biological measures relevant to attention deficit

hyperactivity disorder, including genetics and structural/

functional imaging [4].

In conclusion, this study supports the utility of a standard-

ized approach to computerized cognitive assessment of

attention deficit hyperactivity disorder, to aid in clinical

decision-making. An assessment that covers multiple

domains of cognition enhances the specificity and sensitivity

for differentiating patients with attention deficit hyperactivity

disorder from healthy control subjects. Computerized assess-

ment provides an efficient platform to assess these domains.
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